
Timer Interrupt Programming 1

Timer Interrupt Programming

Intro

The timer interrupt is used when a certain event MUST happen at a given frequency. In the Program-

ming the Sound Blaster 16 Example #4 we used it to play back a sample in Direct Mode so that the

sample frequency matched the timer interrupt’s frequency. This capability not only extremely useful,

but very flexible. We can call any function at whatever frequency! Many games use the timer interrupt

to move sprites, check collisions and other timely events.

Port Listing

Here’s a listing of the ports that we can communicate with to set the correct timing frequency and how

we intend on communicating with the Timer Interrupt.

8253 Control Bit Descriptions

The Timer Interrupt is officially called the 8253 in case you were wondering. It can be controlled

through its control port which is 0x43. The byte of information that we send there tells it exactly how

to behave and how we are going to communicate with it. All we need to know is that writing a byte to

port 43h, the Control Register, will set methods on how we want the Timer Interrupt to behave. Any

writes to the Counter Ports will set their frequencies! Lets create a function that will replace the current

timer interrupt for Counter 0, with a new one.

troPOI #retnuoC egasU

h04 0retnuoC ksiD/remiT

h14 1retnuoC hserfeRyromeM

h24 2retnuoC rekaepS/evirDepaT

h34 retsigeRlortnoC snoitcnufremiTgnillortnoC

Timer Interrupt Programming 2

Hooking the Interrupt

Lets design a function that will replace the current timer interrupt function with a new one to do our

bidding! Here’s just such a function!

 Located in Header file

 #define TIMERISR 0x1C

 #define LOW_BYTE(n) (n & 0x00ff)

 #define HIGH_BYTE(n) ((n>>8)&0x00ff)

 extern Timer_ISR(_go32_dpmi_registers*);

 _go32_dpmi_seginfo OldTimer,NewTimer;

 _go32_dpmi_registers timerregs;

Located in the CPP file

 void ISRS::SetupTimerISR()

 { SetTimer=1;

 _go32_dpmi_get_protected_mode_interrupt_vector(TIMERISR,&OldTimer);

 NewTimer.pm_offset = (int)Timer_ISR;

 NewTimer.pm_selector=_go32_my_cs();

 _go32_dpmi_allocate_iret_wrapper(&NewTimer);

 _go32_dpmi_set_protected_mode_interrupt_vector(TIMERISR,&NewTimer);

}

7tiB 6tiB 5tiB 4tiB 3tiB 2tiB 1tiB 0tiB noitcnuF

dohteMgnitnuoC

0 yranibnitnuoC

1 DCBnitnuoC

edoMretnuoC

0 0 0 tnuoclanimretnotpurretnI

0 0 1 tohs-enoelbareggirtererawdraH

- 1 0 rotareneGetaR

- 1 1 evaWerauqS

1 0 0 ebortselbareggirtererawtfoS

1 0 1 ebortselbareggirtererawdraH

lortnoCetirWdnadaeR

1 0 noitarepohctalretnuoC

0 1 retnuocfoetybtnacifingiStsaeletirW/daeR

1 0 retnuocfoetybtnacifingiStsometirW/daeR

1 1 etybtnacifingiS,tsomneht,tsaeletirW/daeR

noitareporofdesseccaebotretnuoC

0 0 0

0 1 1

1 0 2

1 1 lagellI

Timer Interrupt Programming 3

Normal C++

 Located in Header File

 #define TIMERISR 0x1C

 #define LOW_BYTE(n) (n & 0x00ff)

 #define HIGH_BYTE(n) ((n>>8)&0x00ff)

 extern void interrupt Timer_ISR(__CPPARGS);

 void interrupt (*Old_TIMERISR)(__CPPARGs);

Located in the CPP File

 void ISRS::SetupTimerISR()

 { SetTimer=1;

 Old_TIMERISR = _dos_getvect(TIMERISR);

 _dos_setvect(TIMERISR,Timer_ISR);

 }

Here we define TIMERISR to be 0x1c which is the correct interrupt number. We also define two

macros that will return the High and Low portions of a 16 bit number. We declare Timer_ISR(..) to be

extern so that we can define it later on. Remember that we must have it defined before trying to create

an instance of our ISRS class. Normal C users have little to worry about, except for not being cool :) In

the main SetupTimerISR function we set a variable telling the program that the Timer Interrupt has

been altered so that it will be changed back to normal after the program is finished running. The rest

you will see a lot when hooking interrupts with DJGPP. We get the pointer to the old ISR, set the offset

and selector accordingly, allocate a wrapper to help us out, and whaaamo set the ISR to our new one.

Remember that our ISR routine has to be declared globally for this to work at all. Look at the ISR stuff

in the sb16e4.zip in the file section to see what the heck I mean! Immediately after this function has

run, the new ISR (Timer_ISR) will be called at whatever frequency that timer was set at. By default it

is set to 18.2 hz. Now, lets see here, 18.2 doesn’t sound real fast does it?! How can we create a fluid

moving game with super collision detection and object motion if we can only call those functions 18

times a second?! Luckily we CAN change the frequency of the Timer Interrupt, here’s how.

Changing the Frequency

The timer chip is fed with a 1.19318 MHZ clock speed. To set our timer to a given hz, we must take this

number and divide it by the hz. As you might see, 1,193,180 / 65535 gives us 18.2 hz!

 void ISRS::SetTimerFrequency(float hz)

 { float base=1193180.0;

 unsigned short word;

 base/=hz;

 byte=(unsigned short)base;

 outp(0x43,0x3c);

 outp(0x40, LOW_BYTE(word));

 outp(0x40,HIGH_BYTE(word));

 }

Timer Interrupt Programming 4

Here’s where everything comes together. Our Control Byte must be set as to Count in binary, use Mode

2 (Rate Generator), Read/Write Lease then Most Significant bit, then use Counter 0. So according to

our table above it will be 00 111 10 0 with 0x3C being its Hex equivalent. We then write that

Control Byte to the Control Register at 0x43. Afterwards we write the Low, then High ends of our

frequency to the port for Counter 0 (0x40)! There we have it!

Before Program Exits

Remember that we changed the Interrupt function to ours when we started our program, not to mention

its frequency. We must remember to change it back to the original one before our program exits or who

knows what will happen!! Since we are going to be using more than just the Timer Interrupt in the ISRS

class, lets test the variable before returning it.

 void ISRS::ReturnISRS()

 {

 if(SetTimer)

 {_go32_dpmi_set_protected_mode_interrupt_vector(TIMERISR,&OldTimer);

 _go32_dpmi_free_iret_wrapper(&NewTimer);

 outp(0x43,0x3c);

 outp(0x40,LOW_BYTE(0xFFFF));

 outp(0x40,HIGH_BYTE(0xFFFF));

 }

 }

And of course Normal C++

 void ISRS::ReturnISRS()

 {

 if(SetTimer)

 {_dos_setvect(TIMERISR,Old_TIMERISR);

 outp(0x43,0x3c);

 outp(0x40,LOW_BYTE(0xFFFF));

 outp(0x40,HIGH_BYTE(0xFFFF));

 }

 }

After running these functions the Timer ISR will be returned to normal and will be running at the

boring 18.2 hz.

NOTE: There are several problems associated with changing the frequency of the Timer Interrupt.

First, under Windows95, a program attempting to change the frequency under a DOS Window will

be kicked back into Windows and told that the program should run under MS-DOS Mode. Under a

Windows DOS Window, I am yet to find any means of changing the frequency. The alternative is to

re-boot in MS-DOS Mode and run the program where everything will work fine.

Timer Interrupt Programming 5

Secondly, when we divide 1.19318 MHZ by our frequency we will get a fractional part left out. For the

most part this isn’t a problem since most programmers hook up into the Timer Interrupt for the purpose

of running collision detection functions or AI algorithms. When the frequency needs to be more pre-

cise, things start getting into trouble. In playing sound from a .WAV or .VOC in Direct Mode, the timer

must be set precisely at the same frequency as the sample. The result is less than optimum sound

quality. More information resides at the Sound Playback in Direct Mode Tutorial should you be utiliz-

ing the Timer Interrupt for this purpose.

Thanks for the ear. I think you’ll find the Timer Interrupt VERY easy to use and extremely flexible. If

you have any questions, comments, rude remarks please give me some feedback!

Contact Information

I just wanted to mention that everything here is copyrighted, feel free to distribute this document to

anyone you want, just don’t modify it! You can get a hold of me through my website or direct email.

Please feel free to email me about anything. I can’t guarantee that I’ll be of ANY help, but I’ll sure

give it a try :-)

Email : deltener@mindtremors.com

Webpage : http://www.inversereality.org

Created by

Justin
 Deltener

